G.shdsl — Как работает G.SHDSLНа главную > DSL Технологии > Стандарт G.shdsl > Как работает G.SHDSL | ||||||||
реклама Система G.shdsl транспортирует сигналы E-1 между узлом доступа (он обычно расположен на местной АТС) и помещением пользователя. При необходимости на этом участке может быть установлен промежуточный регенератор. Если нужно увеличить скорость передачи, в G.shdsl предусмотрена возможность пересылки данных по двум парам одновременно.
В диапазоне частот А (примерно до 200 кГц), где переходное влияние минимально, спектральные плотности (Power Signal Density, PSD) нисходящего (DownStream, D/S) и восходящего (UpStream, U/S) сигналов одинаковы. В диапазоне частот В (полоса частот 200—250 кГц) спектральная плотность нисходящего сигнала меньше спектральной плотности этого сигнала в диапазоне А в целях уменьшения переходного влияния NEXT на восходящий сигнал в этой области частот. Благодаря этому, переходные влияния NEXT в диапазонах частот А и В оказываются одинаковыми. В свою очередь, спектральная плотность сигнала восходящего потока в диапазоне частот В уменьшена по сравнению с аналогичным параметром этого сигнала в диапазоне А. Это позволило дополнительно улучшить отношение сигнал/шум в области частот В. Следует отметить, что уменьшение спектральной плотности восходящего сигнала в диапазоне В практически не ухудшает отношения сигнал/шум нисходящего сигнала на входе пользовательского модема по двум причинам: во-первых, полоса частот нисходящего сигнала расширена по сравнению с полосой частот восходящего сигнала, в результате чего первый оказывается менее чувствительным к переходному влиянию со стороны второго. Во-вторых, модемы пользователей пространственно разнесены, что также уменьшает уровень переходной помехи. В диапазоне частот С спектральная плотность нисходящего сигнала максимальна, поскольку восходящий сигнал в этой области практически равен нулю. Поэтому отношение сигнал/шум для нисходящего сигнала на входе модема пользователя оказывается высоким. Рассматриваемая форма спектра сигнала G.shdsl оказывается оптимальной в том случае, когда все работающие по данному кабелю системы xDSL, также являются системами типа G.shdsl, т. е., когда определяющей помехой является переходная помеха Self NEXT. Однако она будет оптимальна и в том случае, когда в этом пучке кабеля вместе с системами G.shdsl работают системы ADSL, поскольку основной спектр восходящего сигнала G.shdsl расположен ниже частоты 250 кГц, между тем как основная мощность составляющих нисходящего потока ADSL приходится на более высокие частоты. Предварительные расчеты также показывают, что помехи от системы G.shdsl в нисходящем тракте системы ADSL (от сети к пользователю) меньше помех от работающей по двум парам системы HDSL и существенно меньше помех от работающей по одной паре на полной скорости (2,3 Мбит/с) системы HDSL с кодированием 2B1Q. Спектральная совместимость систем ADSL и G.shdsl позволяет оператору связи максимально задействовать инфраструктуру его местной телефонной сети, а также размещать станционные платы модемов обоих типов на одном мультиплексоре доступа DSLAM. Заметим, что именно такая своеобразная форма спектров сигналов в области частот 200—250 кГц, когда спектральная плотность восходящего сигнала «поднята», а спектральная плотность нисходящего сигнала «утоплена» по сравнению с соседними частотами, и послужила причиной появления в названии этой достаточно экзотической системы определения interlocking. Отмеченные свойства G.shdsl чрезвычайно важны для обеспечения устойчивой работы в условиях широкого внедрения технологий xDSL в будущем. Выполненные на основе используемых ранее шумовых моделей (в том числе и описанных в стандартах) результаты анализа устойчивости работы могут оказаться недостоверными. Таким образом, развертывая сегодня системы передачи, оператор связи не будет иметь гарантии, что те сохранят устойчивую работоспособность в будущем, когда по соседним парам будут работать другие системы. реклама |
Производители xDSL оборудования
|